

Simulation questions - SixTrack

G. Robert-Demolaize, Y. Luo

OUTLINE

- I Tracking features in SixTrack Beam-beam module
- II Modifications Implementation
- III Preliminary runs Optimization for CPU farm

I - Tracking features in SixTrack

- SixTrack: full 6D and chromatic treatment of particles over element-by-element tracking routines, using thin lens approximation.
- Internal limitation originally: 64 particles => need to increase drastically this number!!
- This is done by applying a DO loop over packs of 64 particles; upper limit is now set to 20000 particles (max = 357 packs).
- No apparent limitation to the number of turns, except memory issues.
- There is an option to save the coordinates of all particles at every element of the machine.
- To save CPU time, most of the output files are optional.

Beam-beam module

- From SixTrack manual:
 - define the beam-beam element (strong beam or wire):

```
name type h-sep v-sep strength-ratio

20 [mm] [mm] allows to split the kick
```

define the type of interaction:

```
BFAM norm. emittance
                                  rms bunch length [m]
               [µm.rad]
                                                                        optional switches
                  emitnx emitny
                                               ibeco ibtyp
                                                           Ihc ibbc
       partnum
                                   sigz
                                        sige
Npart
                                        rms energy spread
       name ibsix xang
                          xplane
   6D slices
                               crossing plane [rad]
               half crossing
               angle [rad]
```

Crossing plane – crossing angle

crossing plane angle $\alpha = xplane$ in the (x-y) plane

half crossing angle $\varphi = x$ ang in the $(\tilde{x}$ -s) plane

II - Modifications

- RHIC studies on beam-beam interaction should allow changing some of the main parameters, namely:
 - the number of particles, e.g. when modeling the wire compensator experiment to change the wire intensity,
 - the separation in each plane, if one decides to move the "other beam" towards the tracked particles,
 - the size of the "other beam", i.e. its normalized transverse emittances.
- While the population of the Strong Beam is already an existing parameter, the beam-beam distance and beam size can be modified on a turn by turn basis.

Implementation

- Lattice model is not an issue: 4D-6D, thin-thick beam-beam kicks are modified => changes are linear and "easy" to implement !!
- User has two options for the turn-by-turn modulations: random fluctuation or cosine function, e.g. for the Strong Beam population:

•
$$N_{part} = N_{part} * K * (1 + A_N * cos [2πω_N (n_{turn}-1) + φ_N])$$

•
$$N_{part} = N_{part} * K * (1 + A_N * 2 * [0.5 - Rand()])$$

Rand() is a uniform distribution function within the interval [0;1]. The choice is made between "random" and "cosine" with the value of the frequency ω_N : if set to zero, "random" is applied.

New format of SixTrack input

```
special switch value to turn ON new features
BEAM-BEAM-----
2.0D+11 2.5 2.5 0.25 0.0005 1
ip681 0 0 0 1.000 1E-3 1.000 0.005 1.000 0.000 0.000 1.000 0.000
                                                                            1.000 1.000
ip682 0 0 0 -2.000 5E-3 0.000 0.000 1.000 0.000 1.000 0.000 0.000 1.000 1.000
NEXT
        = K, coefficient for Strong Beam population; sign gives the type of particles
        = [A_N, \omega_N, \phi_N], modulation on Strong Beam population
        = [A_X, \omega_X, \phi_X], modulation on horizontal position
        = [A_y, \omega_y, \phi_y], modulation on vertical position
        = [\eta_X, \eta_Y], coefficient on Strong Beam normalized emittances
```

III - Preliminary runs

- Test version only uses the newly implemented multi-particle feature, reading input files of up to 6400 particles. The goal of preliminary simulations is to perform emittance growth and beam lifetime benchmarking with real data.
- Tracking is done for the RHIC lattice (BB @ IP6 and IP8, eLens @ IP10), simulating 2 minutes in the machine ($\approx 10^7$ turns) so as to get meaningful statistics.
- Original plan: print out 6D coordinates of particles after every turn => this is unrealistic considering the amount of turns tracked and the ensuing CPU requirements!!
- Solution: calculate $\sum 2J_{x,y}$ and $\sum (x,y)^2$ every turn but print it out only every 10⁵ turns; also check for lost particles every turn (aperture limitation at N* $\sigma_{x,y}$, equivalent to collimation).

Optimization for CPU farm

- Some tests were with 1 CPU for 4 particles over 10⁵ turns:
 - ✓ 1 step = 4 particles, 100k turns = ~50 seconds
 - ✓ 1 job = 4 particles, 1E7 turns = 5k seconds
 - ✓ 1 run = 64 particles, 1E7 turns = 80k seconds
 - √ 1 case = 6400 particles, 1E7 turns = 8M seconds = 92.5 days
- Current plans foresee roughly 100 cases (studying various parameters like phase advance, intensity of compensation, etc...) => need to parallelize jobs !!
- Since SixTrack is being used, worked with CERN to use BOINC (LHC@home) resources, but effort was unsuccessful; still can use regular CERN LSF queues, but these are shared with experiments and other CERN tracking studies...
- Recently started to adapt the code for IBM's BlueGene and ComPASS's NERSC farm systems; now awaiting user accounts.